Wissensmanagement

Ist eine KI kreativ?

Im letzten Blog-Post ging es um die Frage, ob eine Künstliche Intelligenz (KI) tatsächlich intelligent ist oder Intelligenz nur simuliert. Dabei sollten wir es uns nicht zu einfach machen und aus einer gewissen anthropozentrischen Hybris heraus Intelligenz schlicht als eine genuin menschliche Eigenschaft deklarieren. Denn es kommt darauf an, wie man Intelligenz definiert. Aber halt, das stand ja alles schon im letzten Post.

Dieser endete mit der Aussage, KI sei aufgrund ihrer Funktionsweise (Statistik + Stochastik) strukturkonservativ und damit also nicht kreativ (für einige Intelligenz-Konzepte ist Kreativität ein Element von Intelligenz). Fragt man, mal wieder, Chat GPT selbst, ist die Antwort verhalten diplomatisch (in Auszügen):

Als KI-System bin ich in der Lage, bestimmte Formen der Kreativität auf der Grundlage der Daten und des Wissens zu zeigen, die mir zur Verfügung gestellt werden.

Kreativität zeigen ist etwas anderes als kreativ sein, nicht wahr? Man könnte auch wieder das Verb ’simulieren‘ verwenden, das schon in mehreren vorausgegangenen Posts aufgetaucht ist. So hat eine KI wie ChatGPT mittlerweile gelernt, dass Gedichte oder Songtexte dann als besonders kreativ wahrgenommen werden, wenn darin unerwartete Wörter auftauchen, die Wahrscheinlichkeit, auf der die Texte an sich basieren, also durchbrochen wird. Das hier angewandte Verfahren nennt sich temperature sampling:
Dabei wird die Wahrscheinlichkeiten der generierten Texte manipuliert, indem eine ‚Temperatur‘ angewandt wird, die die Entropie oder Unvorhersehbarkeit des generierten Textes steuert. Konkret bedeutet dies, dass bei höheren Temperaturen die Wahrscheinlichkeit der Auswahl von weniger wahrscheinlichen Wörtern erhöht wird, was zu einer größeren Diversität des generierten Textes führt. Bei niedrigeren Temperaturen hingegen werden nur die am wahrscheinlichsten vorausgesagten Wörter ausgewählt, was zu einer höheren Vorhersehbarkeit des Textes führt. Damit wird der Eindruck von Kreativität erzeugt.

Es bleibt aber beim bloßen Eindruck von Kreativität, denn noch immer basiert alles – auch die gewählte ‚Temperatur‘ – auf Mustern und Strukturen, die in Trainingsdaten vorhanden sind. KI trifft keine bewussten Entscheidungen, sie hat keine eigenen Ziele und Motivationen. Die von KI-Systemen erzeugten Werke können originell sein, aber sie sind nicht das Ergebnis von emotionaler Intuition, Selbstausdruck oder Erfahrung wie es bei menschlicher, vor allem tatsächlich künstlerischer Kreativität der Fall ist.

Dies stellt jedoch bereits hohe Ansprüche an Kreativität. Für die – nennen wir es mal – Alltagskreativität taugt die KI durchaus: einen neuen Slogan finden, eine gute Überschrift für einen Text, eine passende Visualisierung für ein Konzept, Multiple-Choice-Fragen für eine Klausur… Auch wir Menschen sind in unseren vermeintlich kreativen Phasen nicht immer disruptiv kreativ, sondern wandeln lediglich Bekanntes ab.

Aber vielleicht ist die Frage weniger, inwieweit uns eine KI in Sachen Kreativität ersetzen kann, sondern wie sie uns dabei helfen kann selbst kreativer zu werden. Diese These vertritt zum Beispiel Ethan Mollick, der Innovation an der Universität von Pennsylvania lehrt: Er plädiert dafür, ChatGPT als Sparingspartner beim Brainstorming zu nutzen, denn ChatGPT produziert viele Ideen. Und unter vielen ist eventuell auch eine gute oder eine, die uns selbst inspiriert. Und hier kommt Go ins Spiel: Am 15. März 2016 schlug zum ersten Mal eine KI den menschlichen Go-Weltmeister. Ein Forscherteam der Universitäten Hongkong, Yale und Princeton ließ fast sechs Millionen menschliche Go-Spielzüge aus der Zeit 1950 bis März 2016 analysieren, mit dem Ergebnis, dass die Züge sich nicht verbessert hatten. Vielmehr war über die Jahre eine große Routine eingekehrt, eine Wiederholung des Bewährten anstatt innovatives Spielen. Und dann kam der Computer und plötzlich wurde das menschliche Spiel wieder kreativer und dadurch qualitativ besser, so die Erkenntnis des Forscherteams, das noch Daten bis 2021 ausgewertet hat. Dabei haben die Menschen keineswegs die neuen Ideen der KI nachgeahmt. Sie haben (wieder) eigene entwickelt. Die KI hat sie herausgefordert: „Das Spiel des Computers war so anders, dass ich mich erst einmal daran gewöhnen musste. Ich habe festgestellt, dass ich noch mehr über Go lernen muss.“ (Sedol Lee, der vom Computer besiegte Go-Weltmeister).

Den Menschen ungewöhnliche Sichtweisen bieten und sie dadurch auf ganz neue Ideen zu bringen – das scheint eine unerwartete Stärke von KI zu sein.

KI mal heiter zum Wochenanfang

KI mal heiter zum Wochenanfang
Torte der Wahrheit aus DIE ZEIT 23. März 2023

Ich freue mich sehr, dass sowohl hier als auch in LinkedIn über die Kommentare eine echte Diskussion rund um dieses Thema entsteht (z.B. Gedanken zum Deutschen Idealismus). Ich werde weiter denken und schreiben. Zum Start in die Woche aber mal etwas weniger Schwergängiges als Hegel ;-), gesehen und schnappgeschossen heute in DIE ZEIT.

Müssen wir unsere Definition von ‚Wissen‘ überdenken? – Fortsetzung

In meinem letzten Post habe ich einer Künstlichen Intelligenz (KI) Wissen abgesprochen, weil sie keine Erfahrung im Sinne eines unmittelbaren lebensweltlichen Bezugs machen könne. Man kann den von der KI selbst im Kontext Wissen verwendeten Begriff der Erfahrung (s. Folge 1 dieser kleinen KI-Nachdenkerei) aber auch anders verstehen: Nämlich als Ergebnis eines Lernprozesses, in dem „Erwartungen an Ursache-Wirkungs-Zusammenhänge“ (übrigens Teil der Wissensdefinition von Probst) erfüllt werden oder eben nicht. Im Falle des Lernens der KI bedeutet dies, dass die KI ‚erfährt‘ (!), welche Antworten ihrerseits akzeptiert werden und welche nicht. Die Kumulierung einer solchen Erfahrung von Validität führt zu Überzeugung, führt zu etwas, das man auch als Wissen bezeichnen kann.

Erfahrung kann in diesem Kontext noch von einer anderen Seite betrachtet werden: Der Soziologe Oskar Negt definiert Erfahrung als Verarbeitung von Realität. Erfahrungen sind für Negt „Momente einer durch Begriffe und durch Sprache vermittelten schöpferischen Auseinandersetzung mit der Realität“. D.h. die KI hat einen mittelbaren lebensweltlichen Bezug durch die Nutzung versprachlichter menschlicher Erfahrung. Sie kann also zwar selbst keine Erfahrungen machen, aber die Erfahrungen anderer durchaus nutzen. Genügt dieser mittelbare Zugriff auf Erfahrung, um dann eben doch von einem nicht-personengebundenen Wissen zu sprechen?

Fragen wir doch nochmals die KI, in diesem Fall ChatGPT 3, selbst. Sie erinnern sich? Im letzten Post hatte ich gefragt, ob man bei einer KI von Wissen sprechen kann, was ChatGPT unbedingt bejaht hat. Nun lautet die Frage: Viele Definitionen sagen, Wissen sei an Personen gebunden. Stimmst du dem als KI zu?

Die Antwort – frei nach dem Motto, was interessiert mich mein Geschwätz von gestern:
Als KI-basiertes Sprachmodell habe ich kein eigenes Wissen im menschlichen Sinne, sondern ich bin in der Lage, auf eine enorme Menge von Informationen zuzugreifen und diese zu verarbeiten, um Fragen zu beantworten und Probleme zu lösen. Das von mir verarbeitete Wissen ist jedoch an Menschen gebunden, da es von ihnen erstellt und von ihnen in Sprache und Schrift festgehalten wurde. Das bedeutet, dass das Wissen, das ich verarbeite, von den Menschen geprägt ist, die es erstellt haben, und von den Menschen, die es nutzen, um ihre Entscheidungen zu treffen und ihr Verständnis der Welt zu erweitern.
Es gibt jedoch einige Einschränkungen bei der Fähigkeit von KI, Wissen vollständig zu verstehen, da Wissen oft durch kulturelle und soziale Kontexte geprägt wird, die KI möglicherweise nicht vollständig erfassen oder verstehen kann. Insgesamt würde ich jedoch sagen, dass Wissen eng mit den Erfahrungen und der Interpretation von Menschen verbunden ist und dass KI als Werkzeug genutzt werden kann, um menschliches Wissen zu erweitern und zu verbessern.

Das passt zu dem oben geschilderten Verständnis von mittelbarer, sprachlich vermittelter Erfahrung. In der neuen Aussage erscheint nun ein weiterer interessanter Begriff, der des Verständnisses. Murray Shanahan, Professor für Kognitive Robotik am Imperial College London, schreibt in einem Preprint über Large Language Models: Damit ein Akteur Wissen besitzen könne, müsse er in der Lage sein, selbst Aussagen auf ihre Belastbarkeit hin zu prüfen und damit über die Konzepte von Wahrheit und Falschheit zu verfügen. Für solch eine Prüfung brauche es aber einerseits einen Zugang zur realen Welt. Andererseits müsse der Akteur über all jenes Hintergrundwissen verfügen, das wir Menschen als kulturell geprägte Sprachgemeinschaft teilen und voraussetzen, wenn wir die Gültigkeit von Aussagen beurteilen. Die geteilte Lebensform, die wechselseitigem Verstehen und Vertrauen von Menschen zugrunde liegt, fehle. KI könne auch nicht wirklich argumentieren, sie erwecke nur den Anschein, denn anstelle einer internen Darstellung einer formalen Logik, beruhten ihre Aussagen lediglich auf einer statistisch plausiblen Aneinanderreihung von Wörtern.

Womit wir doch wieder beim unmittelbaren lebensweltlichen Bezug, dem Zugang zur realen Welt wären, und bei einem noch weitergehenden Konzept, dem der Wahrheit. Diese ist keine göttliche, sondern eine kulturell geprägte. Womit wir uns der Frage nach dem Trainingsraum der KI, nach dem Risiko der Reproduktion sozialer Biases usw. nähern. Aber das vertagen wir auf einen nächsten Post!

Zum Abschluss noch ein Gedanke von Lucie Flek, Professorin für Sprachtechnologie Uni Marburg: „Wir haben ein grundsätzliches Problem mit der Definition von Intelligenz. Wir sind uns nicht einig,ob dafür wichtig ist, dass die Maschine tatsächlich über Wissen verfügt wie wir Menschen, oder ob es ausreicht, dass sie sich so verhält, dass es für den Menschen intelligent aussieht.“

Übrigens: Intelligenz kommt vom Lateinischen intellegere: verstehen

Versteht eine KI, was wir fragen und was sie antwortet?

Fortsetzung folgt.

Müssen wir unsere Definition von ‚Wissen‘ überdenken?

Wie wahrscheinlich die meisten von Ihnen, habe ich in den letzten Wochen immer mal wieder ein Schwätzchen mit ChatGPT geführt, dem auf einer Künstlichen Intelligenz basierenden Chatbot der Firma OpenAI. Und da ich seit Jahren, wie wahrscheinlich ebenfalls die meisten von Ihnen, meinen Studierenden erzähle, ein Merkmal von Wissen sei, dass es an Personen gebunden ist (im Unterschied zu Daten und Informationen), habe ich den Chatbot gefragt:

Kann man bei einer KI von Wissen sprechen?

Die Antwort kam, wie immer prompt:
Ja, bei einer KI kann man von Wissen sprechen. Eine KI ist ein Programm, das auf einem Algorithmus basiert und darauf trainiert wird, aus Daten und Erfahrungen zu lernen, Muster zu erkennen und Entscheidungen zu treffen. Wenn eine KI erfolgreich trainiert wurde, kann sie ein umfangreiches Wissen über das zugrunde liegende Problem oder den Anwendungsbereich haben.
Allerdings ist es wichtig zu beachten, dass das Wissen, das eine KI besitzt, auf den Daten und Erfahrungen basiert, die ihr während des Trainings zur Verfügung gestellt wurden. Die Qualität und die Art der Daten und Erfahrungen, auf die die KI trainiert wurde, können das Wissen beeinflussen, das die KI besitzt. Daher müssen Entwickler und Trainer von KI-Systemen sicherstellen, dass die Daten und Erfahrungen, auf die die KI trainiert wird, von hoher Qualität und angemessen sind, um ein sinnvolles und aussagekräftiges Wissen zu gewinnen
.

Klingt schlüssig, oder? Stutzig gemacht hat mich hier jedoch der Begriff der ‚Erfahrung‘. In der Philosophie versteht man unter Erfahrung die durch die Sinne vermittelte Gewissheit der äußeren und inneren Dinge. Erfahrung hat in diesem Verständnis einen unmittelbaren lebensweltlichen Bezug. Wenn wir also sagen, dass Wissen aus einer Verknüpfung von Daten und Informationen mit Erfahrung hervorgeht und wir diesem Verständnis von Erfahrung folgen, bedeutet der Schritt hin zum Wissen einen Abgleich mit einer unmittelbar sinnlich erfahrenen äußeren Lebenswelt.

Dazu passt eine kleine Anekdote über den Musiker und Dichter Nick Cave:
Ein Fan hatte Nick Cave einen Songtext geschickt, den er durch ChatGPT hatte produzieren lassen. Die Aufgabe war, einen Songtext im Stil von Nick Cave zu schreiben. Herausgekommen sind Zeilen wie „I’ve got the blood of angels on my hands / I’ve got the fire of hell in my eyes“. Durchaus Nick Cave-ish. Nick Cave reagierte darauf wie folgt: Das Ergebnis sei eine groteske Verhöhnung dessen, was es heißt ein Mensch zu sein. Songs entstünden aus Leiden, sie basierten auf einem komplexen inneren Schöpfungskampf. Daten litten nicht.
Und sie machen (noch) keine unmittelbaren Erfahrungen.

Oder machen wir es uns damit zu einfach in der Wahrung des Anspruchs Wissen sei ausschließlich menschlich?

Fortsetzung folgt.

WMOOC Live Session on ‚A short history of KM development‘

Even though the German Knowledge Management MOOC (WMOOC) already ended few weeks ago we are still polishing the recordings of our live sessions. One more is available now, one more in English language: Peter Pawlowsky of Chemnitz University talks about A short history of KM development, from knowledge distribution to knowledge sharing (83’19 min). He also gives a personal outlook on the future of KM. Enjoy!

Wissensmanagement im 21. Jahrhundert

Ich möchte Sie gerne einladen zu einer gemeinsamen Netzwerkveranstaltung der Gesellschaft für Wissensmanagement e. V. und der Hanns-Seidel-Stiftung: Am 31. März wird es in München um das Wissensmanagement im 21. Jahrhundert gehen – eine durchaus umfassende Fragestellung, die aus verschiedenen Perspektiven beleuchtet werden soll. Dabei steht die Vernetzung der Teilnehmenden und der Austausch mit Expert:innen im Vordergrund, es wird abgesehen von knappen Inputs zur Einstimmung keine ‚klassischen‘ Vorträge geben. Ich bin gespannt, zumal ich einen solchen zehnminütigen Input zur Bedeutung von Wissen für die Zukunftsfähigkeit von Unternehmen geben sowie gemeinsam mit einem Kunden als Expertin an einer Themeninsel zur Einführung eines systematischen Wissensmanagements mitwirken darf.

Neugierig geworden? Ausführliche Informationen zur Veranstaltung sowie die Möglichkeit sich kostenfrei für eine Präsenzteilnahme oder virtuelle Teilnahme anzumelden finden Sie hier. Sehen wir uns in München?

WMOOC Live Session zu Body of Knowledge online

Und wieder ist eine Aufzeichnung einer informativen Session aus unserem Wissensmanagement MOOC 2022 auf dem Kanal der Open Academy verfügbar. Dieses Mal – schon zum vierten Mal als Referent beim WMOOC dabei – von Stefan Zillich zu Body of Knowledge – Ideen zu Idealgewicht und Problemzonen beim Formen von Wissensbeständen (Dauer: 57’56 Min):

Live geht es mit den Live Sessions am Freitag, 13. Januar um 11 Uhr weiter. Dann wird Prof. Peter Pawlowsky sowohl einen Blick zurück auf die bisherige Entwicklung von Wissensmanagement werfen als auch einen spekulativen Blick in die Zukunft. Bei Interesse an einer Teilnahme bitte einfach bei mir melden!

WMOOC Live Session zum Pyramid Model online

Mein Wissensmanagement-MOOC Mit-Koordinator Dirk Liesch war über den Jahreswechsel ganz fleißig und hat die Aufzeichnungen der letzten Live Sessions aus dem WMOOC 2022 bearbeitet und online gestellt. Los geht es hier in meinem Blog in dieser Woche mit Annika Lawrence, die über das im Rahmen ihrer von mir betreuten Masterarbeit entwickelte Pyramid Model für Wissensmanagement berichtet. Sehr inspirierend (Dauer 43’55 Min). Viel Spaß!

Aufzeichnung der Live Session zu ‚Wissensmanagement wird agil‘

Meine eigene WMOOC Live Session vom 13.10., gehalten auf dem knowledgecamp der Gesellschaft für Wissensmanagement e.V. ist nun online verfügbar. Viel Spaß! (Dauer 39’23 min)

In den nächsten Wochen wird es übrigens noch zahlreiche inspirierende Live Sessions im WMOOC geben. Seien Sie dabei! Eine Übersicht finden Sie hier.

WMOOC Live Session zum Digitalem Zwilling

WMOOC Live Session zum Digitalem Zwilling
MOOC

In der nächsten Woche startet bereits das zweite Modul des diesjährigen Wissensmanagement-MOOC. Und wir freuen uns auf eine Live Session, in der wir uns mit einem innovativen technischen Thema beschäftigen: Digitaler Zwilling der Organisation: Bestehende Wissensressourcen einfach finden mit Lukas Klaßen von Knowledge in a Box.

Termin: 3. November, 10 Uhr

Wenn Sie gerne dabei sein möchten, schreiben Sie mir einfach! Oder registrieren Sie sich für den WMOOC-Newsletter! Dann erhalten Sie alle Session-Einladungen immer rechtzeitig inklusive der Einwahldaten.